Predicting Fire Outbreak Caused by Electrical Faults using Artificial Bee Colony Algorithm
ثبت نشده
چکیده
In Nigeria, there have been increases in damages due to fire outbreaks particularly in industrial and busy environments. Fire outbreak has caused serious injuries to people, loss of lives, damage of properties etc. Methods usually used in predicting fire outbreaks are fire alarm, flame detection, smoke detection algorithm, real-time fire, flame detection etc. This Research work introduces an artificial bee colony heuristic for predicting fire outbreaks in industrial environment in Nigeria. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. In this paper, artificial bee colony technique was used for predicting fire outbreaks caused by electrical faults. Two Experiments were conducted, the first Experiment (Exp. 1) using 26 different test simulations was performed using different fault resistance, a constant colony size of 20 (area of search) and max Cycles of 5 (maximum number of iteration). It shows that when the fault resistance is between 0.3 ohms 0.0 ohms, there will be likelihood of danger occurring among all faults at the same time, and none of the faults will be normal. While the second Experiment (Exp. 2) conducted, using 26 different test simulations was performed using different fault resistance, a constant colony size of 100 (area
منابع مشابه
BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملOptimization of Biodiesel Production from Prunus Scoparia using Artificial Bee Colony Algorithm
Renewable energy sources are developed worldwide, owing to high oil prices and in order to limit greenhouse gas emissions. The objective of this research was to study the feasibility of biodiesel production from mountain almond (Prunus Scoparia) oil using ultrasonic system and optimization of the process using Artificial Bees Colony (ABC) Algorithm. The results showed that by increasing the mol...
متن کاملEvaluation of Cutting Performance of Diamond Saw Machine Using Artificial Bee Colony (ABC) Algorithm
Artificial Intelligence (AI) techniques are used for solving the intractable engineering problems. In this study, it is aimed to study the application of artificial bee colony algorithm for predicting the performance of circular diamond saw in sawing of hard rocks. For this purpose, varieties of fourteen types of hard rocks were cut in laboratory using a cutting rig at 5 mm depth of cut, 40 cm/...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE COLONY ALGORITHM
Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements...
متن کاملDesign Optimization for Total Volume Reduction of Permanent Magnet Synchronous Generators
Permanent magnet synchronous generators (PMSGs) are novel generators which can be used in high-performance wind farms. High efficiency and flexibility in producing electricity from variable rotation make them good candidate for wind power applications. Furthermore, because these kinds of generators have no excitation winding, there is no copper loss on rotor; hence, they can operate at high pow...
متن کامل